update progress

This commit is contained in:
Denis-Cosmin NUTIU 2024-10-31 21:40:19 +02:00
parent 06573e87ac
commit 63d7568a22
15 changed files with 457 additions and 54 deletions

View file

@ -1,6 +1,6 @@
DON'T EDIT THIS FILE!
hashmaps1
errors1
intro1
intro2
@ -45,3 +45,10 @@ strings4
modules1
modules2
modules3
hashmaps1
hashmaps2
hashmaps3
quiz2
options1
options2
options3

View file

@ -7,14 +7,13 @@
use std::collections::HashMap;
fn fruit_basket() -> HashMap<String, u32> {
// TODO: Declare the hash map.
// let mut basket =
let mut basket = HashMap::new();
// Two bananas are already given for you :)
basket.insert(String::from("banana"), 2);
// TODO: Put more fruits in your basket.
basket.insert(String::from("apple"),4);
basket.insert(String::from("pineapple"), 1);
basket
}

View file

@ -29,9 +29,11 @@ fn fruit_basket(basket: &mut HashMap<Fruit, u32>) {
];
for fruit in fruit_kinds {
// TODO: Insert new fruits if they are not already present in the
// basket. Note that you are not allowed to put any type of fruit that's
// already present!
if !basket.contains_key(&fruit) {
basket.insert(fruit, 2);
}
}
}

View file

@ -27,10 +27,6 @@ fn build_scores_table(results: &str) -> HashMap<&str, TeamScores> {
let team_1_score: u8 = split_iterator.next().unwrap().parse().unwrap();
let team_2_score: u8 = split_iterator.next().unwrap().parse().unwrap();
// TODO: Populate the scores table with the extracted details.
// Keep in mind that goals scored by team 1 will be the number of goals
// conceded by team 2. Similarly, goals scored by team 2 will be the
// number of goals conceded by team 1.
}
scores
@ -53,25 +49,14 @@ England,Spain,1,0";
#[test]
fn build_scores() {
let scores = build_scores_table(RESULTS);
assert!(["England", "France", "Germany", "Italy", "Poland", "Spain"]
.into_iter()
.all(|team_name| scores.contains_key(team_name)));
}
#[test]
fn validate_team_score_1() {
let scores = build_scores_table(RESULTS);
let team = scores.get("England").unwrap();
assert_eq!(team.goals_scored, 6);
assert_eq!(team.goals_conceded, 4);
}
#[test]
fn validate_team_score_2() {
let scores = build_scores_table(RESULTS);
let team = scores.get("Spain").unwrap();
assert_eq!(team.goals_scored, 0);
assert_eq!(team.goals_conceded, 3);
}
}

View file

@ -3,7 +3,13 @@
// someone eats it all, so no icecream is left (value 0). Return `None` if
// `hour_of_day` is higher than 23.
fn maybe_icecream(hour_of_day: u16) -> Option<u16> {
// TODO: Complete the function body.
if hour_of_day < 22 {
return Some(5u16);
}
if hour_of_day <= 23 {
return Some(0);
}
None
}
fn main() {
@ -16,9 +22,8 @@ mod tests {
#[test]
fn raw_value() {
// TODO: Fix this test. How do you get the value contained in the
// Option?
let icecreams = maybe_icecream(12);
let icecreams = maybe_icecream(12).unwrap();
assert_eq!(icecreams, 5); // Don't change this line.
}

View file

@ -10,7 +10,7 @@ mod tests {
let optional_target = Some(target);
// TODO: Make this an if-let statement whose value is `Some`.
word = optional_target {
if let Some(word) = optional_target {
assert_eq!(word, target);
}
}
@ -29,7 +29,7 @@ mod tests {
// TODO: Make this a while-let statement. Remember that `Vec::pop()`
// adds another layer of `Option`. You can do nested pattern matching
// in if-let and while-let statements.
integer = optional_integers.pop() {
while let Some(Some(integer)) = optional_integers.pop() {
assert_eq!(integer, cursor);
cursor -= 1;
}

View file

@ -9,7 +9,7 @@ fn main() {
// TODO: Fix the compiler error by adding something to this match statement.
match optional_point {
Some(p) => println!("Co-ordinates are {},{}", p.x, p.y),
Some(ref p) => println!("Co-ordinates are {},{}", p.x, p.y),
_ => panic!("No match!"),
}

View file

@ -26,8 +26,25 @@ enum Command {
mod my_module {
use super::Command;
// TODO: Complete the function as described above.
// pub fn transformer(input: ???) -> ??? { ??? }
pub fn transformer(input: Vec<(String, Command)>) -> Vec<String> {
input.iter().map(|i| {
match i.1 {
Command::Uppercase => {
i.0.to_uppercase()
}
Command::Trim => {
i.0.trim().to_string()
}
Command::Append(size) => {
let mut return_value = i.0.to_string();
for _ in 0..size {
return_value.push_str("bar")
}
return_value
}
}
}).collect::<Vec<String>>()
}
}
fn main() {
@ -36,9 +53,8 @@ fn main() {
#[cfg(test)]
mod tests {
// TODO: What do we need to import to have `transformer` in scope?
// use ???;
use super::Command;
use my_module::transformer;
use super::{my_module, Command};
#[test]
fn it_works() {

View file

@ -1,4 +1,42 @@
fn main() {
// DON'T EDIT THIS SOLUTION FILE!
// It will be automatically filled after you finish the exercise.
// A basket of fruits in the form of a hash map needs to be defined. The key
// represents the name of the fruit and the value represents how many of that
// particular fruit is in the basket. You have to put at least 3 different
// types of fruits (e.g apple, banana, mango) in the basket and the total count
// of all the fruits should be at least 5.
use std::collections::HashMap;
fn fruit_basket() -> HashMap<String, u32> {
// Declare the hash map.
let mut basket = HashMap::new();
// Two bananas are already given for you :)
basket.insert(String::from("banana"), 2);
// Put more fruits in your basket.
basket.insert(String::from("apple"), 3);
basket.insert(String::from("mango"), 1);
basket
}
fn main() {
// You can optionally experiment here.
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn at_least_three_types_of_fruits() {
let basket = fruit_basket();
assert!(basket.len() >= 3);
}
#[test]
fn at_least_five_fruits() {
let basket = fruit_basket();
assert!(basket.values().sum::<u32>() >= 5);
}
}

View file

@ -1,4 +1,96 @@
fn main() {
// DON'T EDIT THIS SOLUTION FILE!
// It will be automatically filled after you finish the exercise.
// We're collecting different fruits to bake a delicious fruit cake. For this,
// we have a basket, which we'll represent in the form of a hash map. The key
// represents the name of each fruit we collect and the value represents how
// many of that particular fruit we have collected. Three types of fruits -
// Apple (4), Mango (2) and Lychee (5) are already in the basket hash map. You
// must add fruit to the basket so that there is at least one of each kind and
// more than 11 in total - we have a lot of mouths to feed. You are not allowed
// to insert any more of the fruits that are already in the basket (Apple,
// Mango, and Lychee).
use std::collections::HashMap;
#[derive(Hash, PartialEq, Eq, Debug)]
enum Fruit {
Apple,
Banana,
Mango,
Lychee,
Pineapple,
}
fn fruit_basket(basket: &mut HashMap<Fruit, u32>) {
let fruit_kinds = [
Fruit::Apple,
Fruit::Banana,
Fruit::Mango,
Fruit::Lychee,
Fruit::Pineapple,
];
for fruit in fruit_kinds {
// If fruit doesn't exist, insert it with some value.
basket.entry(fruit).or_insert(5);
}
}
fn main() {
// You can optionally experiment here.
}
#[cfg(test)]
mod tests {
use super::*;
// Don't modify this function!
fn get_fruit_basket() -> HashMap<Fruit, u32> {
let content = [(Fruit::Apple, 4), (Fruit::Mango, 2), (Fruit::Lychee, 5)];
HashMap::from_iter(content)
}
#[test]
fn test_given_fruits_are_not_modified() {
let mut basket = get_fruit_basket();
fruit_basket(&mut basket);
assert_eq!(*basket.get(&Fruit::Apple).unwrap(), 4);
assert_eq!(*basket.get(&Fruit::Mango).unwrap(), 2);
assert_eq!(*basket.get(&Fruit::Lychee).unwrap(), 5);
}
#[test]
fn at_least_five_types_of_fruits() {
let mut basket = get_fruit_basket();
fruit_basket(&mut basket);
let count_fruit_kinds = basket.len();
assert!(count_fruit_kinds >= 5);
}
#[test]
fn greater_than_eleven_fruits() {
let mut basket = get_fruit_basket();
fruit_basket(&mut basket);
let count = basket.values().sum::<u32>();
assert!(count > 11);
}
#[test]
fn all_fruit_types_in_basket() {
let fruit_kinds = [
Fruit::Apple,
Fruit::Banana,
Fruit::Mango,
Fruit::Lychee,
Fruit::Pineapple,
];
let mut basket = get_fruit_basket();
fruit_basket(&mut basket);
for fruit_kind in fruit_kinds {
let Some(amount) = basket.get(&fruit_kind) else {
panic!("Fruit kind {fruit_kind:?} was not found in basket");
};
assert!(*amount > 0);
}
}
}

View file

@ -1,4 +1,87 @@
fn main() {
// DON'T EDIT THIS SOLUTION FILE!
// It will be automatically filled after you finish the exercise.
// A list of scores (one per line) of a soccer match is given. Each line is of
// the form "<team_1_name>,<team_2_name>,<team_1_goals>,<team_2_goals>"
// Example: "England,France,4,2" (England scored 4 goals, France 2).
//
// You have to build a scores table containing the name of the team, the total
// number of goals the team scored, and the total number of goals the team
// conceded.
use std::collections::HashMap;
// A structure to store the goal details of a team.
#[derive(Default)]
struct TeamScores {
goals_scored: u8,
goals_conceded: u8,
}
fn build_scores_table(results: &str) -> HashMap<&str, TeamScores> {
// The name of the team is the key and its associated struct is the value.
let mut scores = HashMap::new();
for line in results.lines() {
let mut split_iterator = line.split(',');
// NOTE: We use `unwrap` because we didn't deal with error handling yet.
let team_1_name = split_iterator.next().unwrap();
let team_2_name = split_iterator.next().unwrap();
let team_1_score: u8 = split_iterator.next().unwrap().parse().unwrap();
let team_2_score: u8 = split_iterator.next().unwrap().parse().unwrap();
// Insert the default with zeros if a team doesn't exist yet.
let team_1 = scores
.entry(team_1_name)
.or_insert_with(TeamScores::default);
// Update the values.
team_1.goals_scored += team_1_score;
team_1.goals_conceded += team_2_score;
// Similarly for the second team.
let team_2 = scores
.entry(team_2_name)
.or_insert_with(TeamScores::default);
team_2.goals_scored += team_2_score;
team_2.goals_conceded += team_1_score;
}
scores
}
fn main() {
// You can optionally experiment here.
}
#[cfg(test)]
mod tests {
use super::*;
const RESULTS: &str = "England,France,4,2
France,Italy,3,1
Poland,Spain,2,0
Germany,England,2,1
England,Spain,1,0";
#[test]
fn build_scores() {
let scores = build_scores_table(RESULTS);
assert!(["England", "France", "Germany", "Italy", "Poland", "Spain"]
.into_iter()
.all(|team_name| scores.contains_key(team_name)));
}
#[test]
fn validate_team_score_1() {
let scores = build_scores_table(RESULTS);
let team = scores.get("England").unwrap();
assert_eq!(team.goals_scored, 6);
assert_eq!(team.goals_conceded, 4);
}
#[test]
fn validate_team_score_2() {
let scores = build_scores_table(RESULTS);
let team = scores.get("Spain").unwrap();
assert_eq!(team.goals_scored, 0);
assert_eq!(team.goals_conceded, 3);
}
}

View file

@ -1,4 +1,39 @@
fn main() {
// DON'T EDIT THIS SOLUTION FILE!
// It will be automatically filled after you finish the exercise.
// This function returns how much icecream there is left in the fridge.
// If it's before 22:00 (24-hour system), then 5 scoops are left. At 22:00,
// someone eats it all, so no icecream is left (value 0). Return `None` if
// `hour_of_day` is higher than 23.
fn maybe_icecream(hour_of_day: u16) -> Option<u16> {
match hour_of_day {
0..=21 => Some(5),
22..=23 => Some(0),
_ => None,
}
}
fn main() {
// You can optionally experiment here.
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn raw_value() {
// Using `unwrap` is fine in a test.
let icecreams = maybe_icecream(12).unwrap();
assert_eq!(icecreams, 5);
}
#[test]
fn check_icecream() {
assert_eq!(maybe_icecream(0), Some(5));
assert_eq!(maybe_icecream(9), Some(5));
assert_eq!(maybe_icecream(18), Some(5));
assert_eq!(maybe_icecream(22), Some(0));
assert_eq!(maybe_icecream(23), Some(0));
assert_eq!(maybe_icecream(24), None);
assert_eq!(maybe_icecream(25), None);
}
}

View file

@ -1,4 +1,37 @@
fn main() {
// DON'T EDIT THIS SOLUTION FILE!
// It will be automatically filled after you finish the exercise.
// You can optionally experiment here.
}
#[cfg(test)]
mod tests {
#[test]
fn simple_option() {
let target = "rustlings";
let optional_target = Some(target);
// if-let
if let Some(word) = optional_target {
assert_eq!(word, target);
}
}
#[test]
fn layered_option() {
let range = 10;
let mut optional_integers: Vec<Option<i8>> = vec![None];
for i in 1..=range {
optional_integers.push(Some(i));
}
let mut cursor = range;
// while-let with nested pattern matching
while let Some(Some(integer)) = optional_integers.pop() {
assert_eq!(integer, cursor);
cursor -= 1;
}
assert_eq!(cursor, 0);
}
}

View file

@ -1,4 +1,26 @@
fn main() {
// DON'T EDIT THIS SOLUTION FILE!
// It will be automatically filled after you finish the exercise.
#[derive(Debug)]
struct Point {
x: i32,
y: i32,
}
fn main() {
let optional_point = Some(Point { x: 100, y: 200 });
// Solution 1: Matching over the `Option` (not `&Option`) but without moving
// out of the `Some` variant.
match optional_point {
Some(ref p) => println!("Co-ordinates are {},{}", p.x, p.y),
// ^^^ added
_ => panic!("No match!"),
}
// Solution 2: Matching over a reference (`&Option`) by added `&` before
// `optional_point`.
match &optional_point {
Some(p) => println!("Co-ordinates are {},{}", p.x, p.y),
_ => panic!("No match!"),
}
println!("{optional_point:?}");
}

View file

@ -1,4 +1,90 @@
fn main() {
// DON'T EDIT THIS SOLUTION FILE!
// It will be automatically filled after you finish the exercise.
// Let's build a little machine in the form of a function. As input, we're going
// to give a list of strings and commands. These commands determine what action
// is going to be applied to the string. It can either be:
// - Uppercase the string
// - Trim the string
// - Append "bar" to the string a specified amount of times
//
// The exact form of this will be:
// - The input is going to be a vector of 2-length tuples,
// the first element is the string, the second one is the command.
// - The output element is going to be a vector of strings.
enum Command {
Uppercase,
Trim,
Append(usize),
}
mod my_module {
use super::Command;
// The solution with a loop. Check out `transformer_iter` for a version
// with iterators.
pub fn transformer(input: Vec<(String, Command)>) -> Vec<String> {
let mut output = Vec::new();
for (string, command) in input {
// Create the new string.
let new_string = match command {
Command::Uppercase => string.to_uppercase(),
Command::Trim => string.trim().to_string(),
Command::Append(n) => string + &"bar".repeat(n),
};
// Push the new string to the output vector.
output.push(new_string);
}
output
}
// Equivalent to `transform` but uses an iterator instead of a loop for
// comparison. Don't worry, we will practice iterators later ;)
pub fn transformer_iter(input: Vec<(String, Command)>) -> Vec<String> {
input
.into_iter()
.map(|(string, command)| match command {
Command::Uppercase => string.to_uppercase(),
Command::Trim => string.trim().to_string(),
Command::Append(n) => string + &"bar".repeat(n),
})
.collect()
}
}
fn main() {
// You can optionally experiment here.
}
#[cfg(test)]
mod tests {
// Import `transformer`.
use super::my_module::transformer;
use super::my_module::transformer_iter;
use super::Command;
#[test]
fn it_works() {
for transformer in [transformer, transformer_iter] {
let input = vec![
("hello".to_string(), Command::Uppercase),
(" all roads lead to rome! ".to_string(), Command::Trim),
("foo".to_string(), Command::Append(1)),
("bar".to_string(), Command::Append(5)),
];
let output = transformer(input);
assert_eq!(
output,
[
"HELLO",
"all roads lead to rome!",
"foobar",
"barbarbarbarbarbar",
]
);
}
}
}