record progress: tests, lifetimes, iterators

This commit is contained in:
Denis-Cosmin Nutiu 2024-11-03 12:39:59 +02:00
parent 8e902435f4
commit 0d6e6da436
4 changed files with 329 additions and 11 deletions

View file

@ -1,6 +1,6 @@
DON'T EDIT THIS FILE! DON'T EDIT THIS FILE!
iterators2 box1
intro1 intro1
intro2 intro2
@ -72,4 +72,8 @@ lifetimes3
tests1 tests1
tests2 tests2
tests3 tests3
iterators1 iterators1
iterators2
iterators3
iterators4
iterators5

View file

@ -1,4 +1,86 @@
fn main() { #[derive(Debug, PartialEq, Eq)]
// DON'T EDIT THIS SOLUTION FILE! enum DivisionError {
// It will be automatically filled after you finish the exercise. // Example: 42 / 0
DivideByZero,
// Only case for `i64`: `i64::MIN / -1` because the result is `i64::MAX + 1`
IntegerOverflow,
// Example: 5 / 2 = 2.5
NotDivisible,
}
fn divide(a: i64, b: i64) -> Result<i64, DivisionError> {
if b == 0 {
return Err(DivisionError::DivideByZero);
}
if a == i64::MIN && b == -1 {
return Err(DivisionError::IntegerOverflow);
}
if a % b != 0 {
return Err(DivisionError::NotDivisible);
}
Ok(a / b)
}
fn result_with_list() -> Result<Vec<i64>, DivisionError> {
// ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
let numbers = [27, 297, 38502, 81];
let division_results = numbers.into_iter().map(|n| divide(n, 27));
// Collects to the expected return type. Returns the first error in the
// division results (if one exists).
division_results.collect()
}
fn list_of_results() -> Vec<Result<i64, DivisionError>> {
// ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
let numbers = [27, 297, 38502, 81];
let division_results = numbers.into_iter().map(|n| divide(n, 27));
// Collects to the expected return type.
division_results.collect()
}
fn main() {
// You can optionally experiment here.
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_success() {
assert_eq!(divide(81, 9), Ok(9));
}
#[test]
fn test_divide_by_0() {
assert_eq!(divide(81, 0), Err(DivisionError::DivideByZero));
}
#[test]
fn test_integer_overflow() {
assert_eq!(divide(i64::MIN, -1), Err(DivisionError::IntegerOverflow));
}
#[test]
fn test_not_divisible() {
assert_eq!(divide(81, 6), Err(DivisionError::NotDivisible));
}
#[test]
fn test_divide_0_by_something() {
assert_eq!(divide(0, 81), Ok(0));
}
#[test]
fn test_result_with_list() {
assert_eq!(result_with_list().unwrap(), [1, 11, 1426, 3]);
}
#[test]
fn test_list_of_results() {
assert_eq!(list_of_results(), [Ok(1), Ok(11), Ok(1426), Ok(3)]);
}
} }

View file

@ -1,4 +1,72 @@
fn main() { // 3 possible solutions are presented.
// DON'T EDIT THIS SOLUTION FILE!
// It will be automatically filled after you finish the exercise. // With `for` loop and a mutable variable.
fn factorial_for(num: u64) -> u64 {
let mut result = 1;
for x in 2..=num {
result *= x;
}
result
}
// Equivalent to `factorial_for` but shorter and without a `for` loop and
// mutable variables.
fn factorial_fold(num: u64) -> u64 {
// Case num==0: The iterator 2..=0 is empty
// -> The initial value of `fold` is returned which is 1.
// Case num==1: The iterator 2..=1 is also empty
// -> The initial value 1 is returned.
// Case num==2: The iterator 2..=2 contains one element
// -> The initial value 1 is multiplied by 2 and the result
// is returned.
// Case num==3: The iterator 2..=3 contains 2 elements
// -> 1 * 2 is calculated, then the result 2 is multiplied by
// the second element 3 so the result 6 is returned.
// And so on…
#[allow(clippy::unnecessary_fold)]
(2..=num).fold(1, |acc, x| acc * x)
}
// Equivalent to `factorial_fold` but with a built-in method that is suggested
// by Clippy.
fn factorial_product(num: u64) -> u64 {
(2..=num).product()
}
fn main() {
// You can optionally experiment here.
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn factorial_of_0() {
assert_eq!(factorial_for(0), 1);
assert_eq!(factorial_fold(0), 1);
assert_eq!(factorial_product(0), 1);
}
#[test]
fn factorial_of_1() {
assert_eq!(factorial_for(1), 1);
assert_eq!(factorial_fold(1), 1);
assert_eq!(factorial_product(1), 1);
}
#[test]
fn factorial_of_2() {
assert_eq!(factorial_for(2), 2);
assert_eq!(factorial_fold(2), 2);
assert_eq!(factorial_product(2), 2);
}
#[test]
fn factorial_of_4() {
assert_eq!(factorial_for(4), 24);
assert_eq!(factorial_fold(4), 24);
assert_eq!(factorial_product(4), 24);
}
} }

View file

@ -1,4 +1,168 @@
fn main() { // Let's define a simple model to track Rustlings' exercise progress. Progress
// DON'T EDIT THIS SOLUTION FILE! // will be modelled using a hash map. The name of the exercise is the key and
// It will be automatically filled after you finish the exercise. // the progress is the value. Two counting functions were created to count the
// number of exercises with a given progress. Recreate this counting
// functionality using iterators. Try to not use imperative loops (for/while).
use std::collections::HashMap;
#[derive(Clone, Copy, PartialEq, Eq)]
enum Progress {
None,
Some,
Complete,
}
fn count_for(map: &HashMap<String, Progress>, value: Progress) -> usize {
let mut count = 0;
for val in map.values() {
if *val == value {
count += 1;
}
}
count
}
fn count_iterator(map: &HashMap<String, Progress>, value: Progress) -> usize {
// `map` is a hash map with `String` keys and `Progress` values.
// map = { "variables1": Complete, "from_str": None, … }
map.values().filter(|val| **val == value).count()
}
fn count_collection_for(collection: &[HashMap<String, Progress>], value: Progress) -> usize {
let mut count = 0;
for map in collection {
count += count_for(map, value);
}
count
}
fn count_collection_iterator(collection: &[HashMap<String, Progress>], value: Progress) -> usize {
// `collection` is a slice of hash maps.
// collection = [{ "variables1": Complete, "from_str": None, … },
// { "variables2": Complete, … }, … ]
collection
.iter()
.map(|map| count_iterator(map, value))
.sum()
}
// Equivalent to `count_collection_iterator` and `count_iterator`, iterating as
// if the collection was a single container instead of a container of containers
// (and more accurately, a single iterator instead of an iterator of iterators).
fn count_collection_iterator_flat(
collection: &[HashMap<String, Progress>],
value: Progress,
) -> usize {
// `collection` is a slice of hash maps.
// collection = [{ "variables1": Complete, "from_str": None, … },
// { "variables2": Complete, … }, … ]
collection
.iter()
.flat_map(HashMap::values) // or just `.flatten()` when wanting the default iterator (`HashMap::iter`)
.filter(|val| **val == value)
.count()
}
fn main() {
// You can optionally experiment here.
}
#[cfg(test)]
mod tests {
use super::*;
use Progress::*;
fn get_map() -> HashMap<String, Progress> {
let mut map = HashMap::new();
map.insert(String::from("variables1"), Complete);
map.insert(String::from("functions1"), Complete);
map.insert(String::from("hashmap1"), Complete);
map.insert(String::from("arc1"), Some);
map.insert(String::from("as_ref_mut"), None);
map.insert(String::from("from_str"), None);
map
}
fn get_vec_map() -> Vec<HashMap<String, Progress>> {
let map = get_map();
let mut other = HashMap::new();
other.insert(String::from("variables2"), Complete);
other.insert(String::from("functions2"), Complete);
other.insert(String::from("if1"), Complete);
other.insert(String::from("from_into"), None);
other.insert(String::from("try_from_into"), None);
vec![map, other]
}
#[test]
fn count_complete() {
let map = get_map();
assert_eq!(count_iterator(&map, Complete), 3);
}
#[test]
fn count_some() {
let map = get_map();
assert_eq!(count_iterator(&map, Some), 1);
}
#[test]
fn count_none() {
let map = get_map();
assert_eq!(count_iterator(&map, None), 2);
}
#[test]
fn count_complete_equals_for() {
let map = get_map();
let progress_states = [Complete, Some, None];
for progress_state in progress_states {
assert_eq!(
count_for(&map, progress_state),
count_iterator(&map, progress_state),
);
}
}
#[test]
fn count_collection_complete() {
let collection = get_vec_map();
assert_eq!(count_collection_iterator(&collection, Complete), 6);
assert_eq!(count_collection_iterator_flat(&collection, Complete), 6);
}
#[test]
fn count_collection_some() {
let collection = get_vec_map();
assert_eq!(count_collection_iterator(&collection, Some), 1);
assert_eq!(count_collection_iterator_flat(&collection, Some), 1);
}
#[test]
fn count_collection_none() {
let collection = get_vec_map();
assert_eq!(count_collection_iterator(&collection, None), 4);
assert_eq!(count_collection_iterator_flat(&collection, None), 4);
}
#[test]
fn count_collection_equals_for() {
let collection = get_vec_map();
let progress_states = [Complete, Some, None];
for progress_state in progress_states {
assert_eq!(
count_collection_for(&collection, progress_state),
count_collection_iterator(&collection, progress_state),
);
assert_eq!(
count_collection_for(&collection, progress_state),
count_collection_iterator_flat(&collection, progress_state),
);
}
}
} }