record progress: tests, lifetimes, iterators
This commit is contained in:
parent
8e902435f4
commit
0d6e6da436
4 changed files with 329 additions and 11 deletions
|
@ -1,6 +1,6 @@
|
|||
DON'T EDIT THIS FILE!
|
||||
|
||||
iterators2
|
||||
box1
|
||||
|
||||
intro1
|
||||
intro2
|
||||
|
@ -72,4 +72,8 @@ lifetimes3
|
|||
tests1
|
||||
tests2
|
||||
tests3
|
||||
iterators1
|
||||
iterators1
|
||||
iterators2
|
||||
iterators3
|
||||
iterators4
|
||||
iterators5
|
|
@ -1,4 +1,86 @@
|
|||
fn main() {
|
||||
// DON'T EDIT THIS SOLUTION FILE!
|
||||
// It will be automatically filled after you finish the exercise.
|
||||
#[derive(Debug, PartialEq, Eq)]
|
||||
enum DivisionError {
|
||||
// Example: 42 / 0
|
||||
DivideByZero,
|
||||
// Only case for `i64`: `i64::MIN / -1` because the result is `i64::MAX + 1`
|
||||
IntegerOverflow,
|
||||
// Example: 5 / 2 = 2.5
|
||||
NotDivisible,
|
||||
}
|
||||
|
||||
fn divide(a: i64, b: i64) -> Result<i64, DivisionError> {
|
||||
if b == 0 {
|
||||
return Err(DivisionError::DivideByZero);
|
||||
}
|
||||
|
||||
if a == i64::MIN && b == -1 {
|
||||
return Err(DivisionError::IntegerOverflow);
|
||||
}
|
||||
|
||||
if a % b != 0 {
|
||||
return Err(DivisionError::NotDivisible);
|
||||
}
|
||||
|
||||
Ok(a / b)
|
||||
}
|
||||
|
||||
fn result_with_list() -> Result<Vec<i64>, DivisionError> {
|
||||
// ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
||||
let numbers = [27, 297, 38502, 81];
|
||||
let division_results = numbers.into_iter().map(|n| divide(n, 27));
|
||||
// Collects to the expected return type. Returns the first error in the
|
||||
// division results (if one exists).
|
||||
division_results.collect()
|
||||
}
|
||||
|
||||
fn list_of_results() -> Vec<Result<i64, DivisionError>> {
|
||||
// ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
||||
let numbers = [27, 297, 38502, 81];
|
||||
let division_results = numbers.into_iter().map(|n| divide(n, 27));
|
||||
// Collects to the expected return type.
|
||||
division_results.collect()
|
||||
}
|
||||
|
||||
fn main() {
|
||||
// You can optionally experiment here.
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::*;
|
||||
|
||||
#[test]
|
||||
fn test_success() {
|
||||
assert_eq!(divide(81, 9), Ok(9));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_divide_by_0() {
|
||||
assert_eq!(divide(81, 0), Err(DivisionError::DivideByZero));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_integer_overflow() {
|
||||
assert_eq!(divide(i64::MIN, -1), Err(DivisionError::IntegerOverflow));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_not_divisible() {
|
||||
assert_eq!(divide(81, 6), Err(DivisionError::NotDivisible));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_divide_0_by_something() {
|
||||
assert_eq!(divide(0, 81), Ok(0));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_result_with_list() {
|
||||
assert_eq!(result_with_list().unwrap(), [1, 11, 1426, 3]);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_list_of_results() {
|
||||
assert_eq!(list_of_results(), [Ok(1), Ok(11), Ok(1426), Ok(3)]);
|
||||
}
|
||||
}
|
||||
|
|
|
@ -1,4 +1,72 @@
|
|||
fn main() {
|
||||
// DON'T EDIT THIS SOLUTION FILE!
|
||||
// It will be automatically filled after you finish the exercise.
|
||||
// 3 possible solutions are presented.
|
||||
|
||||
// With `for` loop and a mutable variable.
|
||||
fn factorial_for(num: u64) -> u64 {
|
||||
let mut result = 1;
|
||||
|
||||
for x in 2..=num {
|
||||
result *= x;
|
||||
}
|
||||
|
||||
result
|
||||
}
|
||||
|
||||
// Equivalent to `factorial_for` but shorter and without a `for` loop and
|
||||
// mutable variables.
|
||||
fn factorial_fold(num: u64) -> u64 {
|
||||
// Case num==0: The iterator 2..=0 is empty
|
||||
// -> The initial value of `fold` is returned which is 1.
|
||||
// Case num==1: The iterator 2..=1 is also empty
|
||||
// -> The initial value 1 is returned.
|
||||
// Case num==2: The iterator 2..=2 contains one element
|
||||
// -> The initial value 1 is multiplied by 2 and the result
|
||||
// is returned.
|
||||
// Case num==3: The iterator 2..=3 contains 2 elements
|
||||
// -> 1 * 2 is calculated, then the result 2 is multiplied by
|
||||
// the second element 3 so the result 6 is returned.
|
||||
// And so on…
|
||||
#[allow(clippy::unnecessary_fold)]
|
||||
(2..=num).fold(1, |acc, x| acc * x)
|
||||
}
|
||||
|
||||
// Equivalent to `factorial_fold` but with a built-in method that is suggested
|
||||
// by Clippy.
|
||||
fn factorial_product(num: u64) -> u64 {
|
||||
(2..=num).product()
|
||||
}
|
||||
|
||||
fn main() {
|
||||
// You can optionally experiment here.
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::*;
|
||||
|
||||
#[test]
|
||||
fn factorial_of_0() {
|
||||
assert_eq!(factorial_for(0), 1);
|
||||
assert_eq!(factorial_fold(0), 1);
|
||||
assert_eq!(factorial_product(0), 1);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn factorial_of_1() {
|
||||
assert_eq!(factorial_for(1), 1);
|
||||
assert_eq!(factorial_fold(1), 1);
|
||||
assert_eq!(factorial_product(1), 1);
|
||||
}
|
||||
#[test]
|
||||
fn factorial_of_2() {
|
||||
assert_eq!(factorial_for(2), 2);
|
||||
assert_eq!(factorial_fold(2), 2);
|
||||
assert_eq!(factorial_product(2), 2);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn factorial_of_4() {
|
||||
assert_eq!(factorial_for(4), 24);
|
||||
assert_eq!(factorial_fold(4), 24);
|
||||
assert_eq!(factorial_product(4), 24);
|
||||
}
|
||||
}
|
||||
|
|
|
@ -1,4 +1,168 @@
|
|||
fn main() {
|
||||
// DON'T EDIT THIS SOLUTION FILE!
|
||||
// It will be automatically filled after you finish the exercise.
|
||||
// Let's define a simple model to track Rustlings' exercise progress. Progress
|
||||
// will be modelled using a hash map. The name of the exercise is the key and
|
||||
// the progress is the value. Two counting functions were created to count the
|
||||
// number of exercises with a given progress. Recreate this counting
|
||||
// functionality using iterators. Try to not use imperative loops (for/while).
|
||||
|
||||
use std::collections::HashMap;
|
||||
|
||||
#[derive(Clone, Copy, PartialEq, Eq)]
|
||||
enum Progress {
|
||||
None,
|
||||
Some,
|
||||
Complete,
|
||||
}
|
||||
|
||||
fn count_for(map: &HashMap<String, Progress>, value: Progress) -> usize {
|
||||
let mut count = 0;
|
||||
for val in map.values() {
|
||||
if *val == value {
|
||||
count += 1;
|
||||
}
|
||||
}
|
||||
count
|
||||
}
|
||||
|
||||
fn count_iterator(map: &HashMap<String, Progress>, value: Progress) -> usize {
|
||||
// `map` is a hash map with `String` keys and `Progress` values.
|
||||
// map = { "variables1": Complete, "from_str": None, … }
|
||||
map.values().filter(|val| **val == value).count()
|
||||
}
|
||||
|
||||
fn count_collection_for(collection: &[HashMap<String, Progress>], value: Progress) -> usize {
|
||||
let mut count = 0;
|
||||
for map in collection {
|
||||
count += count_for(map, value);
|
||||
}
|
||||
count
|
||||
}
|
||||
|
||||
fn count_collection_iterator(collection: &[HashMap<String, Progress>], value: Progress) -> usize {
|
||||
// `collection` is a slice of hash maps.
|
||||
// collection = [{ "variables1": Complete, "from_str": None, … },
|
||||
// { "variables2": Complete, … }, … ]
|
||||
collection
|
||||
.iter()
|
||||
.map(|map| count_iterator(map, value))
|
||||
.sum()
|
||||
}
|
||||
|
||||
// Equivalent to `count_collection_iterator` and `count_iterator`, iterating as
|
||||
// if the collection was a single container instead of a container of containers
|
||||
// (and more accurately, a single iterator instead of an iterator of iterators).
|
||||
fn count_collection_iterator_flat(
|
||||
collection: &[HashMap<String, Progress>],
|
||||
value: Progress,
|
||||
) -> usize {
|
||||
// `collection` is a slice of hash maps.
|
||||
// collection = [{ "variables1": Complete, "from_str": None, … },
|
||||
// { "variables2": Complete, … }, … ]
|
||||
collection
|
||||
.iter()
|
||||
.flat_map(HashMap::values) // or just `.flatten()` when wanting the default iterator (`HashMap::iter`)
|
||||
.filter(|val| **val == value)
|
||||
.count()
|
||||
}
|
||||
|
||||
fn main() {
|
||||
// You can optionally experiment here.
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::*;
|
||||
use Progress::*;
|
||||
|
||||
fn get_map() -> HashMap<String, Progress> {
|
||||
let mut map = HashMap::new();
|
||||
map.insert(String::from("variables1"), Complete);
|
||||
map.insert(String::from("functions1"), Complete);
|
||||
map.insert(String::from("hashmap1"), Complete);
|
||||
map.insert(String::from("arc1"), Some);
|
||||
map.insert(String::from("as_ref_mut"), None);
|
||||
map.insert(String::from("from_str"), None);
|
||||
|
||||
map
|
||||
}
|
||||
|
||||
fn get_vec_map() -> Vec<HashMap<String, Progress>> {
|
||||
let map = get_map();
|
||||
|
||||
let mut other = HashMap::new();
|
||||
other.insert(String::from("variables2"), Complete);
|
||||
other.insert(String::from("functions2"), Complete);
|
||||
other.insert(String::from("if1"), Complete);
|
||||
other.insert(String::from("from_into"), None);
|
||||
other.insert(String::from("try_from_into"), None);
|
||||
|
||||
vec![map, other]
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn count_complete() {
|
||||
let map = get_map();
|
||||
assert_eq!(count_iterator(&map, Complete), 3);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn count_some() {
|
||||
let map = get_map();
|
||||
assert_eq!(count_iterator(&map, Some), 1);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn count_none() {
|
||||
let map = get_map();
|
||||
assert_eq!(count_iterator(&map, None), 2);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn count_complete_equals_for() {
|
||||
let map = get_map();
|
||||
let progress_states = [Complete, Some, None];
|
||||
for progress_state in progress_states {
|
||||
assert_eq!(
|
||||
count_for(&map, progress_state),
|
||||
count_iterator(&map, progress_state),
|
||||
);
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn count_collection_complete() {
|
||||
let collection = get_vec_map();
|
||||
assert_eq!(count_collection_iterator(&collection, Complete), 6);
|
||||
assert_eq!(count_collection_iterator_flat(&collection, Complete), 6);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn count_collection_some() {
|
||||
let collection = get_vec_map();
|
||||
assert_eq!(count_collection_iterator(&collection, Some), 1);
|
||||
assert_eq!(count_collection_iterator_flat(&collection, Some), 1);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn count_collection_none() {
|
||||
let collection = get_vec_map();
|
||||
assert_eq!(count_collection_iterator(&collection, None), 4);
|
||||
assert_eq!(count_collection_iterator_flat(&collection, None), 4);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn count_collection_equals_for() {
|
||||
let collection = get_vec_map();
|
||||
let progress_states = [Complete, Some, None];
|
||||
|
||||
for progress_state in progress_states {
|
||||
assert_eq!(
|
||||
count_collection_for(&collection, progress_state),
|
||||
count_collection_iterator(&collection, progress_state),
|
||||
);
|
||||
assert_eq!(
|
||||
count_collection_for(&collection, progress_state),
|
||||
count_collection_iterator_flat(&collection, progress_state),
|
||||
);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
Loading…
Reference in a new issue