/// /// This example demonstrates how to read values from the sensor and /// continously send them to an influx database. /// Make sure you adapt the influx constants and likely also the i2c device id and I2CAddress. /// extern crate bme680; extern crate env_logger; extern crate futures; extern crate influent; extern crate linux_embedded_hal; extern crate tokio; use bme680::{ Bme680, FieldDataCondition, I2CAddress, IIRFilterSize, OversamplingSetting, PowerMode, SettingsBuilder, }; use futures::Future; use linux_embedded_hal::*; use std::time::Duration; use influent::client::{Client, ClientError, Credentials}; use influent::create_client; use influent::measurement::{Measurement, Value}; const INFLUX_ADDRESS: &str = "http://127.0.0.1:8086"; const INFLUX_USER: &str = "user"; const INFLUX_PASSWORD: &str = "pass"; const INFLUX_DATABASE: &str = "influxdb"; fn main() -> Result<(), ()> { // Init device let i2c = I2cdev::new("/dev/i2c-1").unwrap(); let mut dev = Bme680::init(i2c, Delay {}, I2CAddress::Primary) .map_err(|e| eprintln!("Init failed: {:?}", e))?; let settings = SettingsBuilder::new() .with_humidity_oversampling(OversamplingSetting::OS2x) .with_pressure_oversampling(OversamplingSetting::OS4x) .with_temperature_oversampling(OversamplingSetting::OS8x) .with_temperature_filter(IIRFilterSize::Size3) .with_gas_measurement(Duration::from_millis(1500), 320, 25) .with_run_gas(true) .build(); dev.set_sensor_settings(settings) .map_err(|e| eprintln!("Setting sensor settings failed: {:?}", e))?; // Set up Influx client let credentials = Credentials { username: INFLUX_USER, password: INFLUX_PASSWORD, database: INFLUX_DATABASE, }; let hosts = vec![INFLUX_ADDRESS]; let client = create_client(credentials, hosts); dev.set_sensor_mode(PowerMode::ForcedMode) .map_err(|e| eprintln!("Setting sensor mode failed: {:?}", e))?; let (data, state) = dev .get_sensor_data() .map_err(|e| eprintln!("Retrieving sensor data failed: {:?}", e))?; println!("State {:?}", state); println!("Temperature {}°C", data.temperature_celsius()); println!("Pressure {}hPa", data.pressure_hpa()); println!("Humidity {}%", data.humidity_percent()); println!("Gas Resistence {}Ω", data.gas_resistance_ohm()); if state != FieldDataCondition::NewData { let temperature_f = send_value( &client, "temperature", Value::Float(data.temperature_celsius() as f64), ); let pressure_f = send_value( &client, "pressure", Value::Float(data.pressure_hpa() as f64), ); let humidity_f = send_value( &client, "humidity", Value::Float(data.humidity_percent() as f64), ); let gas_f = send_value( &client, "gasresistence", Value::Float(data.gas_resistance_ohm() as f64), ); let f = temperature_f .join4(pressure_f, humidity_f, gas_f) .map(|_| ()) .map_err(|e| eprintln!("Error: {:?}", e)); let mut rt = tokio::runtime::current_thread::Runtime::new().unwrap(); return rt.block_on(f); } Ok(()) } /// Sends a measured value to the influx database fn send_value( client: &Client, type_name: &str, value: Value, ) -> impl Future { let mut measurement = Measurement::new("sensor"); measurement.add_field("value", value); measurement.add_tag("id", "MAC"); measurement.add_tag("name", "bme680"); measurement.add_tag("type", type_name); client.write_one(measurement, None) }