refactor: format code

This commit is contained in:
Denis-Cosmin Nutiu 2024-02-27 22:09:16 +02:00
parent 432d3643c7
commit cf9b0fbdd0
5 changed files with 165 additions and 89 deletions

View file

@ -1,17 +1,15 @@
#![no_std]
use bme680::i2c::Address;
use bme680::{Bme680, Bme680Error, IIRFilterSize, OversamplingSetting, PowerMode, SettingsBuilder};
use core::time::Duration;
use embedded_hal::delay::DelayNs;
use linux_embedded_hal as hal;
use linux_embedded_hal::Delay;
use log::info;
use bme680::i2c::Address;
// Please export RUST_LOG=info in order to see logs in the console.
fn main() -> Result<(), Bme680Error>
{
fn main() -> Result<(), Bme680Error> {
env_logger::init();
let i2c = hal::I2cdev::new("/dev/i2c-1").unwrap();

View file

@ -9,13 +9,22 @@ impl Calculation {
/// * `calibration_data` - The calibration data of the sensor.
/// * `ambient_temperature` - The ambient temperature.
/// * `heater_temperature` - The heater temperature.
pub fn heater_resistance(calibration_data: &CalibrationData, ambient_temperature: i8, heater_temperature: u16) -> u8 {
pub fn heater_resistance(
calibration_data: &CalibrationData,
ambient_temperature: i8,
heater_temperature: u16,
) -> u8 {
// cap temperature
let temp = if heater_temperature <= 400 { heater_temperature } else { 400 };
let temp = if heater_temperature <= 400 {
heater_temperature
} else {
400
};
let var1 = ambient_temperature as i32 * calibration_data.par_gh3 as i32 / 1000i32 * 256i32;
let var2 = (calibration_data.par_gh1 as i32 + 784i32)
* (((calibration_data.par_gh2 as i32 + 154009i32) * temp as i32 * 5i32 / 100i32 + 3276800i32)
* (((calibration_data.par_gh2 as i32 + 154009i32) * temp as i32 * 5i32 / 100i32
+ 3276800i32)
/ 10i32);
let var3 = var1 + var2 / 2i32;
let var4 = var3 / (calibration_data.res_heat_range as i32 + 4i32);
@ -81,10 +90,12 @@ impl Calculation {
/// * `pressure_adc` - The pressure value as returned by the analog to digital converter.
pub fn pressure(calibration_data: &CalibrationData, t_fine: i32, pressure_adc: u32) -> u32 {
let mut var1: i32 = (t_fine >> 1) - 64000;
let mut var2: i32 = ((((var1 >> 2) * (var1 >> 2)) >> 11) * calibration_data.par_p6 as i32) >> 2;
let mut var2: i32 =
((((var1 >> 2) * (var1 >> 2)) >> 11) * calibration_data.par_p6 as i32) >> 2;
var2 += (var1 * (calibration_data.par_p5 as i32)) << 1;
var2 = (var2 >> 2i32) + ((calibration_data.par_p4 as i32) << 16i32);
var1 = (((((var1 >> 2i32) * (var1 >> 2i32)) >> 13i32) * ((calibration_data.par_p3 as i32) << 5i32))
var1 = (((((var1 >> 2i32) * (var1 >> 2i32)) >> 13i32)
* ((calibration_data.par_p3 as i32) << 5i32))
>> 3i32)
+ ((calibration_data.par_p2 as i32 * var1) >> 1i32);
var1 >>= 18i32;
@ -120,7 +131,9 @@ impl Calculation {
- ((temp_scaled * calibration_data.par_h3 as i32 / 100i32) >> 1i32);
let var2: i32 = (calibration_data.par_h2 as i32
* (temp_scaled * calibration_data.par_h4 as i32 / 100i32
+ ((temp_scaled * (temp_scaled * calibration_data.par_h5 as i32 / 100i32)) >> 6i32) / 100i32
+ ((temp_scaled * (temp_scaled * calibration_data.par_h5 as i32 / 100i32))
>> 6i32)
/ 100i32
+ (1i32 << 14i32)))
>> 10i32;
let var3: i32 = var1 * var2;
@ -141,7 +154,11 @@ impl Calculation {
///
/// * `gas_resistance_adc` - The gas resistance reading from the analog to digital converter.
/// * `gas_range` - The lookup table gas range.
pub fn gas_resistance(calibration_data: &CalibrationData, gas_resistance_adc: u16, gas_range: u8) -> u32 {
pub fn gas_resistance(
calibration_data: &CalibrationData,
gas_resistance_adc: u16,
gas_range: u8,
) -> u32 {
let lookup_table1: [u32; 16] = [
2147483647u32,
2147483647u32,

View file

@ -1,6 +1,6 @@
use embedded_hal::i2c::I2c;
use crate::Bme680Error;
use crate::Bme680Error::{I2CRead, I2CWrite};
use embedded_hal::i2c::I2c;
///
/// Represents the I2C address of the BME680 Sensor.
@ -40,11 +40,12 @@ impl I2CUtility {
i2c_handle: &mut I2C,
device_address: u8,
register_address: u8,
) -> Result<u8, Bme680Error>
{
) -> Result<u8, Bme680Error> {
let mut buf = [0; 1];
i2c_handle.write(device_address, &[register_address]).map_err(|_e| { I2CWrite })?;
i2c_handle
.write(device_address, &[register_address])
.map_err(|_e| I2CWrite)?;
match i2c_handle.read(device_address, &mut buf) {
Ok(()) => Ok(buf[0]),
@ -58,9 +59,10 @@ impl I2CUtility {
device_address: u8,
register_address: u8,
buffer: &mut [u8],
) -> Result<(), Bme680Error>
{
i2c_handle.write(device_address, &[register_address]).map_err(|_e| { I2CWrite })?;
) -> Result<(), Bme680Error> {
i2c_handle
.write(device_address, &[register_address])
.map_err(|_e| I2CWrite)?;
match i2c_handle.read(device_address, buffer) {
Ok(()) => Ok(()),
@ -69,7 +71,13 @@ impl I2CUtility {
}
/// Writes bytes to the I2C bus.
pub fn write_bytes<I2C: I2c>(i2c_handle: &mut I2C, device_address: u8, buffer: &[u8]) -> Result<(), Bme680Error> {
i2c_handle.write(device_address, &buffer).map_err(|_e| { I2CWrite })
pub fn write_bytes<I2C: I2c>(
i2c_handle: &mut I2C,
device_address: u8,
buffer: &[u8],
) -> Result<(), Bme680Error> {
i2c_handle
.write(device_address, &buffer)
.map_err(|_e| I2CWrite)
}
}

View file

@ -5,7 +5,6 @@
//! In the examples you can find a demo how to use the library in Linux using the linux-embedded-hal crate (e.g. on a RPI).
//! ```no_run
//! use bme680::{Bme680, Bme680Error, IIRFilterSize, OversamplingSetting, PowerMode, SettingsBuilder};
//! use core::time::Duration;
//! use embedded_hal::delay::DelayNs;
@ -65,27 +64,27 @@
#![forbid(unsafe_code)]
pub use self::settings::{
DesiredSensorSettings, GasSettings, IIRFilterSize, OversamplingSetting, SensorSettings, Settings,
SettingsBuilder, TemperatureSettings,
DesiredSensorSettings, GasSettings, IIRFilterSize, OversamplingSetting, SensorSettings,
Settings, SettingsBuilder, TemperatureSettings,
};
mod calculation;
mod settings;
pub mod i2c;
mod settings;
use crate::calculation::Calculation;
use crate::hal::delay::DelayNs;
use crate::hal::i2c::I2c;
use core::time::Duration;
use core::marker::PhantomData;
use core::time::Duration;
use embedded_hal as hal;
use log::{debug, error, info};
use crate::Bme680Error::{I2CRead, I2CWrite};
use i2c::{Address, I2CUtility};
#[cfg(feature = "serde")]
use serde::{Deserialize, Serialize};
use i2c::{Address, I2CUtility};
use crate::Bme680Error::{I2CRead, I2CWrite};
/// BME680 General config
pub const BME680_POLL_PERIOD_MS: u8 = 10;
@ -342,8 +341,7 @@ fn boundary_check_u8(
value_name: &'static str,
min: u8,
max: u8,
) -> Result<u8, Bme680Error<>>
{
) -> Result<u8, Bme680Error> {
let value = value.ok_or(Bme680Error::BoundaryCheckFailure(value_name))?;
if value < min {
@ -361,7 +359,7 @@ fn boundary_check_u8(
}
impl<I2C: I2c, D: DelayNs> Bme680<I2C, D>
where
where
D: DelayNs,
I2C: I2c,
{
@ -387,12 +385,17 @@ impl<I2C: I2c, D: DelayNs> Bme680<I2C, D>
debug!("Reading chip id");
/* Soft reset to restore it to default values*/
let chip_id = I2CUtility::read_byte::<I2C>(&mut i2c_handle, device_address.addr(), BME680_CHIP_ID_ADDR)?;
let chip_id = I2CUtility::read_byte::<I2C>(
&mut i2c_handle,
device_address.addr(),
BME680_CHIP_ID_ADDR,
)?;
debug!("Chip id: {}", chip_id);
if chip_id == BME680_CHIP_ID {
debug!("Reading calibration data");
let calibration_data = Bme680::<I2C, D>::get_calib_data::<I2C>(&mut i2c_handle, device_address)?;
let calibration_data =
Bme680::<I2C, D>::get_calib_data::<I2C>(&mut i2c_handle, device_address)?;
debug!("Calibration data {:?}", calibration_data);
let device = Bme680 {
i2c_bus_handle: i2c_handle,
@ -411,10 +414,7 @@ impl<I2C: I2c, D: DelayNs> Bme680<I2C, D>
}
/// Sets the sensor registers.
fn bme680_set_registers(
&mut self,
registers: &[(u8, u8)],
) -> Result<(), Bme680Error> {
fn bme680_set_registers(&mut self, registers: &[(u8, u8)]) -> Result<(), Bme680Error> {
if registers.is_empty() || registers.len() > (BME680_TMP_BUFFER_LENGTH / 2) as usize {
return Err(Bme680Error::InvalidLength);
}
@ -427,7 +427,7 @@ impl<I2C: I2c, D: DelayNs> Bme680<I2C, D>
);
self.i2c_bus_handle
.write(self.device_address.addr(), &buffer)
.map_err(|_e| { I2CWrite })?;
.map_err(|_e| I2CWrite)?;
}
Ok(())
@ -443,7 +443,10 @@ impl<I2C: I2c, D: DelayNs> Bme680<I2C, D>
let tph_sett = sensor_settings.temperature_settings;
let gas_sett = sensor_settings.gas_settings;
self.temperature_offset = sensor_settings.temperature_settings.temperature_offset.unwrap_or(0f32);
self.temperature_offset = sensor_settings
.temperature_settings
.temperature_offset
.unwrap_or(0f32);
let mut reg: [(u8, u8); BME680_REG_BUFFER_LENGTH] = [(0, 0); BME680_REG_BUFFER_LENGTH];
let intended_power_mode = self.power_mode;
@ -459,8 +462,11 @@ impl<I2C: I2c, D: DelayNs> Bme680<I2C, D>
let mut element_index = 0;
// Selecting the filter
if desired_settings.contains(DesiredSensorSettings::FILTER_SIZE_SEL) {
let mut data =
I2CUtility::read_byte(&mut self.i2c_bus_handle, self.device_address.addr(), BME680_CONF_ODR_FILT_ADDR)?;
let mut data = I2CUtility::read_byte(
&mut self.i2c_bus_handle,
self.device_address.addr(),
BME680_CONF_ODR_FILT_ADDR,
)?;
debug!("FILTER_SEL: true");
data = (data as i32 & !0x1ci32
@ -488,8 +494,11 @@ impl<I2C: I2c, D: DelayNs> Bme680<I2C, D>
if desired_settings
.contains(DesiredSensorSettings::OST_SEL | DesiredSensorSettings::OSP_SEL)
{
let mut data =
I2CUtility::read_byte(&mut self.i2c_bus_handle, self.device_address.addr(), BME680_CONF_T_P_MODE_ADDR)?;
let mut data = I2CUtility::read_byte(
&mut self.i2c_bus_handle,
self.device_address.addr(),
BME680_CONF_T_P_MODE_ADDR,
)?;
if desired_settings.contains(DesiredSensorSettings::OST_SEL) {
debug!("OST_SEL: true");
@ -504,7 +513,9 @@ impl<I2C: I2c, D: DelayNs> Bme680<I2C, D>
if desired_settings.contains(DesiredSensorSettings::OSP_SEL) {
debug!("OSP_SEL: true");
let tph_sett_os_pres = tph_sett.temperature_oversampling.unwrap_or(OversamplingSetting::OS1x);
let tph_sett_os_pres = tph_sett
.temperature_oversampling
.unwrap_or(OversamplingSetting::OS1x);
data = (data as i32 & !0x1ci32 | (tph_sett_os_pres as i32) << 2i32 & 0x1ci32) as u8;
}
reg[element_index] = (BME680_CONF_T_P_MODE_ADDR, data);
@ -514,10 +525,17 @@ impl<I2C: I2c, D: DelayNs> Bme680<I2C, D>
// Selecting humidity oversampling for the sensor
if desired_settings.contains(DesiredSensorSettings::OSH_SEL) {
debug!("OSH_SEL: true");
let tph_sett_os_hum =
boundary_check_u8(tph_sett.humidity_oversampling.map(|x| x as u8), "TphSett.os_hum", 0, 5)?;
let mut data =
I2CUtility::read_byte(&mut self.i2c_bus_handle, self.device_address.addr(), BME680_CONF_OS_H_ADDR)?;
let tph_sett_os_hum = boundary_check_u8(
tph_sett.humidity_oversampling.map(|x| x as u8),
"TphSett.os_hum",
0,
5,
)?;
let mut data = I2CUtility::read_byte(
&mut self.i2c_bus_handle,
self.device_address.addr(),
BME680_CONF_OS_H_ADDR,
)?;
data = (data as i32 & !0x7i32 | tph_sett_os_hum as i32 & 0x7i32) as u8;
reg[element_index] = (BME680_CONF_OS_H_ADDR, data);
element_index += 1;
@ -571,7 +589,12 @@ impl<I2C: I2c, D: DelayNs> Bme680<I2C, D>
let mut data_array: [u8; BME680_REG_BUFFER_LENGTH] = [0; BME680_REG_BUFFER_LENGTH];
let mut sensor_settings: SensorSettings = Default::default();
I2CUtility::read_bytes(&mut self.i2c_bus_handle, self.device_address.addr(), reg_addr, &mut data_array)?;
I2CUtility::read_bytes(
&mut self.i2c_bus_handle,
self.device_address.addr(),
reg_addr,
&mut data_array,
)?;
if desired_settings.contains(DesiredSensorSettings::GAS_MEAS_SEL) {
sensor_settings.gas_settings = self.get_gas_config()?;
@ -588,17 +611,22 @@ impl<I2C: I2c, D: DelayNs> Bme680<I2C, D>
{
let os_temp: u8 = ((data_array[4usize] as i32 & 0xe0i32) >> 5i32) as u8;
let os_pres: u8 = ((data_array[4usize] as i32 & 0x1ci32) >> 2i32) as u8;
sensor_settings.temperature_settings.temperature_oversampling = Some(OversamplingSetting::from_u8(os_temp));
sensor_settings.temperature_settings.pressure_oversampling = Some(OversamplingSetting::from_u8(os_pres));
sensor_settings
.temperature_settings
.temperature_oversampling = Some(OversamplingSetting::from_u8(os_temp));
sensor_settings.temperature_settings.pressure_oversampling =
Some(OversamplingSetting::from_u8(os_pres));
}
if desired_settings.contains(DesiredSensorSettings::OSH_SEL) {
let os_hum: u8 = (data_array[2usize] as i32 & 0x7i32) as u8;
sensor_settings.temperature_settings.humidity_oversampling = Some(OversamplingSetting::from_u8(os_hum));
sensor_settings.temperature_settings.humidity_oversampling =
Some(OversamplingSetting::from_u8(os_hum));
}
if desired_settings.contains(DesiredSensorSettings::HUMIDITY_CONTROL_SEL) {
sensor_settings.gas_settings.heater_control = Some((data_array[0usize] as i32 & 0x8i32) as u8);
sensor_settings.gas_settings.heater_control =
Some((data_array[0usize] as i32 & 0x8i32) as u8);
}
if desired_settings
@ -627,8 +655,11 @@ impl<I2C: I2c, D: DelayNs> Bme680<I2C, D>
// Call repeatedly until in sleep
loop {
tmp_pow_mode =
I2CUtility::read_byte(&mut self.i2c_bus_handle, self.device_address.addr(), BME680_CONF_T_P_MODE_ADDR)?;
tmp_pow_mode = I2CUtility::read_byte(
&mut self.i2c_bus_handle,
self.device_address.addr(),
BME680_CONF_T_P_MODE_ADDR,
)?;
// Put to sleep before changing mode
current_power_mode = PowerMode::from(tmp_pow_mode & BME680_MODE_MSK);
@ -640,8 +671,7 @@ impl<I2C: I2c, D: DelayNs> Bme680<I2C, D>
tmp_pow_mode &= !BME680_MODE_MSK;
debug!("Setting to sleep tmp_pow_mode: {}", tmp_pow_mode);
self.bme680_set_registers(&[(BME680_CONF_T_P_MODE_ADDR, tmp_pow_mode)])?;
delay
.delay_ms(BME680_POLL_PERIOD_MS as u32);
delay.delay_ms(BME680_POLL_PERIOD_MS as u32);
} else {
break;
}
@ -657,11 +687,12 @@ impl<I2C: I2c, D: DelayNs> Bme680<I2C, D>
}
/// Retrieve current sensor power mode via registers
pub fn get_sensor_mode(
&mut self,
) -> Result<PowerMode, Bme680Error> {
let regs =
I2CUtility::read_byte(&mut self.i2c_bus_handle, self.device_address.addr(), BME680_CONF_T_P_MODE_ADDR)?;
pub fn get_sensor_mode(&mut self) -> Result<PowerMode, Bme680Error> {
let regs = I2CUtility::read_byte(
&mut self.i2c_bus_handle,
self.device_address.addr(),
BME680_CONF_T_P_MODE_ADDR,
)?;
let mode = regs & BME680_MODE_MSK;
Ok(PowerMode::from(mode))
}
@ -696,15 +727,15 @@ impl<I2C: I2c, D: DelayNs> Bme680<I2C, D>
tph_dur = tph_dur.wrapping_add(1u32);
let mut duration = Duration::from_millis(tph_dur as u64);
if sensor_settings.gas_settings.enable_gas_measurement {
duration += sensor_settings.gas_settings.heater_duration.unwrap_or(Duration::default());
duration += sensor_settings
.gas_settings
.heater_duration
.unwrap_or(Duration::default());
}
Ok(duration)
}
fn get_calib_data<I2CX>(
i2c: &mut I2CX,
dev_id: Address,
) -> Result<CalibrationData, Bme680Error>
fn get_calib_data<I2CX>(i2c: &mut I2CX, dev_id: Address) -> Result<CalibrationData, Bme680Error>
where
I2CX: I2c,
{
@ -718,7 +749,8 @@ impl<I2C: I2c, D: DelayNs> Bme680<I2C, D>
dev_id.addr(),
BME680_COEFF_ADDR1,
&mut coeff_array[0..(BME680_COEFF_ADDR1_LEN - 1)],
).map_err(|_e| { I2CRead })?;
)
.map_err(|_e| I2CRead)?;
I2CUtility::read_bytes::<I2CX>(
i2c,
@ -726,7 +758,8 @@ impl<I2C: I2c, D: DelayNs> Bme680<I2C, D>
BME680_COEFF_ADDR2,
&mut coeff_array
[BME680_COEFF_ADDR1_LEN..(BME680_COEFF_ADDR1_LEN + BME680_COEFF_ADDR2_LEN - 1)],
).map_err(|_e| { I2CRead })?;
)
.map_err(|_e| I2CRead)?;
calib.par_t1 = ((coeff_array[34usize] as i32) << 8i32 | coeff_array[33usize] as i32) as u16;
calib.par_t2 = ((coeff_array[2usize] as i32) << 8i32 | coeff_array[1usize] as i32) as i16;
@ -757,23 +790,24 @@ impl<I2C: I2c, D: DelayNs> Bme680<I2C, D>
calib.res_heat_range =
(I2CUtility::read_byte::<I2CX>(i2c, dev_id.addr(), BME680_ADDR_RES_HEAT_RANGE_ADDR)
.map_err(|_e| { I2CRead })? & 0x30) / 16;
.map_err(|_e| I2CRead)?
& 0x30)
/ 16;
calib.res_heat_val =
I2CUtility::read_byte::<I2CX>(i2c, dev_id.addr(), BME680_ADDR_RES_HEAT_VAL_ADDR)
.map_err(|_e| { I2CRead })? as i8;
.map_err(|_e| I2CRead)? as i8;
calib.range_sw_err =
(I2CUtility::read_byte::<I2CX>(i2c, dev_id.addr(), BME680_ADDR_RANGE_SW_ERR_ADDR)
.map_err(|_e| { I2CRead })? & BME680_RSERROR_MSK) / 16;
.map_err(|_e| I2CRead)?
& BME680_RSERROR_MSK)
/ 16;
Ok(calib)
}
fn set_gas_config(
&mut self,
gas_sett: GasSettings,
) -> Result<(), Bme680Error> {
fn set_gas_config(&mut self, gas_sett: GasSettings) -> Result<(), Bme680Error> {
if self.power_mode != PowerMode::ForcedMode {
return Err(Bme680Error::DefinePwrMode);
}
@ -789,7 +823,11 @@ impl<I2C: I2c, D: DelayNs> Bme680<I2C, D>
),
(
BME680_GAS_WAIT0_ADDR,
Calculation::heater_duration(gas_sett.heater_duration.unwrap_or_else(|| Duration::from_secs(0))),
Calculation::heater_duration(
gas_sett
.heater_duration
.unwrap_or_else(|| Duration::from_secs(0)),
),
),
];
@ -858,8 +896,11 @@ impl<I2C: I2c, D: DelayNs> Bme680<I2C, D>
data.status |= buff[14] & BME680_HEAT_STAB_MSK;
if data.status & BME680_NEW_DATA_MSK != 0 {
let (temp, t_fine) =
Calculation::temperature(&self.calibration_data, adc_temp, Some(self.temperature_offset));
let (temp, t_fine) = Calculation::temperature(
&self.calibration_data,
adc_temp,
Some(self.temperature_offset),
);
debug!(
"adc_temp: {} adc_pres: {} adc_hum: {} adc_gas_res: {}, t_fine: {}",
adc_temp, adc_pres, adc_hum, adc_gas_res, t_fine

View file

@ -195,21 +195,33 @@ impl SettingsBuilder {
mut self,
temperature_oversampling: OversamplingSetting,
) -> SettingsBuilder {
self.sensor_settings.temperature_settings.temperature_oversampling = Some(temperature_oversampling);
self.sensor_settings
.temperature_settings
.temperature_oversampling = Some(temperature_oversampling);
self.desired_settings |= DesiredSensorSettings::OST_SEL;
self
}
/// With pressure oversampling.
pub fn with_pressure_oversampling(mut self, pressure_oversampling: OversamplingSetting) -> SettingsBuilder {
self.sensor_settings.temperature_settings.pressure_oversampling = Some(pressure_oversampling);
pub fn with_pressure_oversampling(
mut self,
pressure_oversampling: OversamplingSetting,
) -> SettingsBuilder {
self.sensor_settings
.temperature_settings
.pressure_oversampling = Some(pressure_oversampling);
self.desired_settings |= DesiredSensorSettings::OSP_SEL;
self
}
/// With humidity oversampling.
pub fn with_humidity_oversampling(mut self, humidity_oversampling: OversamplingSetting) -> SettingsBuilder {
self.sensor_settings.temperature_settings.humidity_oversampling = Some(humidity_oversampling);
pub fn with_humidity_oversampling(
mut self,
humidity_oversampling: OversamplingSetting,
) -> SettingsBuilder {
self.sensor_settings
.temperature_settings
.humidity_oversampling = Some(humidity_oversampling);
self.desired_settings |= DesiredSensorSettings::OSH_SEL;
self
}