Migrate influx example to influx_db_client crate and tokio 0.2

This commit is contained in:
marcelbuesing 2020-07-27 13:12:16 +02:00
parent 97d9f5ea81
commit 9df17c592d
No known key found for this signature in database
GPG key ID: 5E8C5624159F80BB
3 changed files with 49 additions and 78 deletions

View file

@ -19,9 +19,9 @@ log = "0.4"
[dev-dependencies]
env_logger = "0.7"
futures = { version = "0.3", features = ["compat"] }
futures-timer = "3.0"
futures = { version = "0.3" }
i2cdev = "0.4"
influent = "0.5"
influx_db_client = { version = "0.4", default-features= false, features = ["rustls-tls"] }
linux-embedded-hal = "0.3"
tokio = {version = "0.2", features = ["full"] }
url = "2.1"

View file

@ -3,24 +3,15 @@
/// continously send them to an influx database.
/// Make sure you adapt the influx constants and likely also the i2c device id and I2CAddress.
///
extern crate bme680;
extern crate env_logger;
extern crate futures;
extern crate influent;
extern crate linux_embedded_hal;
extern crate tokio;
use crate::futures::compat::Future01CompatExt;
use bme680::{
Bme680, FieldDataCondition, I2CAddress, IIRFilterSize, OversamplingSetting, PowerMode,
SettingsBuilder,
};
use futures::prelude::*;
use influent::client::{Client, ClientError, Credentials};
use influent::create_client;
use influent::measurement::{Measurement, Value};
use influx_db_client::{points, Client, Point, Points, Precision, Value};
use linux_embedded_hal::*;
use std::time::Duration;
use tokio::time::delay_for;
use url::Url;
const INFLUX_ADDRESS: &str = "http://127.0.0.1:8086";
const INFLUX_USER: &str = "user";
@ -45,69 +36,54 @@ async fn main() -> Result<(), ()> {
dev.set_sensor_settings(settings)
.map_err(|e| eprintln!("Setting sensor settings failed: {:?}", e))?;
// Set up Influx client
let credentials = Credentials {
username: INFLUX_USER,
password: INFLUX_PASSWORD,
database: INFLUX_DATABASE,
};
let client = Client::new(Url::parse(INFLUX_ADDRESS).unwrap(), INFLUX_DATABASE)
.set_authentication(INFLUX_USER, INFLUX_PASSWORD);
let hosts = vec![INFLUX_ADDRESS];
let client = create_client(credentials, hosts);
loop {
dev.set_sensor_mode(PowerMode::ForcedMode)
.map_err(|e| eprintln!("Setting sensor mode failed: {:?}", e))?;
let (data, state) = dev
.get_sensor_data()
.map_err(|e| eprintln!("Retrieving sensor data failed: {:?}", e))?;
dev.set_sensor_mode(PowerMode::ForcedMode)
.map_err(|e| eprintln!("Setting sensor mode failed: {:?}", e))?;
let (data, state) = dev
.get_sensor_data()
.map_err(|e| eprintln!("Retrieving sensor data failed: {:?}", e))?;
println!("State {:?}", state);
println!("Temperature {}°C", data.temperature_celsius());
println!("Pressure {}hPa", data.pressure_hpa());
println!("Humidity {}%", data.humidity_percent());
println!("Gas Resistence {}Ω", data.gas_resistance_ohm());
println!("State {:?}", state);
println!("Temperature {}°C", data.temperature_celsius());
println!("Pressure {}hPa", data.pressure_hpa());
println!("Humidity {}%", data.humidity_percent());
println!("Gas Resistence {}Ω", data.gas_resistance_ohm());
if state == FieldDataCondition::NewData {
let temperature_f = ipoint(
"temperature",
Value::Float(data.temperature_celsius() as f64),
);
let pressure_f = ipoint("pressure", Value::Float(data.pressure_hpa() as f64));
let humidity_f = ipoint("humidity", Value::Float(data.humidity_percent() as f64));
let gas_f = ipoint(
"gasresistence",
Value::Float(data.gas_resistance_ohm() as f64),
);
if state != FieldDataCondition::NewData {
let temperature_f = send_value(
&client,
"temperature",
Value::Float(data.temperature_celsius() as f64),
);
let pressure_f = send_value(
&client,
"pressure",
Value::Float(data.pressure_hpa() as f64),
);
let humidity_f = send_value(
&client,
"humidity",
Value::Float(data.humidity_percent() as f64),
);
let gas_f = send_value(
&client,
"gasresistence",
Value::Float(data.gas_resistance_ohm() as f64),
);
let points = points!(temperature_f, pressure_f, humidity_f, gas_f);
if let Err(e) = future::try_join4(temperature_f, pressure_f, humidity_f, gas_f).await {
eprintln!("Error: {:?}", e);
if let Err(e) = client
.write_points(points, Some(Precision::Seconds), None)
.await
{
eprintln!("Error: {:?}", e);
}
}
delay_for(Duration::from_secs(10)).await;
}
Ok(())
}
/// Sends a measured value to the influx database
async fn send_value<'a>(
client: &dyn Client,
type_name: &str,
value: Value<'a>,
) -> Result<(), ClientError> {
let mut measurement = Measurement::new("sensor");
measurement.add_field("value", value);
measurement.add_tag("id", "MAC");
measurement.add_tag("name", "bme680");
measurement.add_tag("type", type_name);
fn ipoint(type_name: &str, value: Value) -> Point {
let point = Point::new("sensor")
.add_field("value", value)
.add_tag("id", Value::String("VMAC".to_string()))
.add_tag("name", Value::String("bme680".to_string()))
.add_tag("type", Value::String(type_name.to_string()));
client.write_one(measurement, None).compat().await?;
Ok(())
point
}

View file

@ -1,25 +1,20 @@
#![no_std]
extern crate bme680;
extern crate embedded_hal;
extern crate env_logger;
extern crate linux_embedded_hal as hal;
#[macro_use]
extern crate log;
use crate::hal::*;
use bme680::*;
use core::result;
use core::time::Duration;
use embedded_hal::blocking::delay::DelayMs;
use embedded_hal::blocking::i2c;
use linux_embedded_hal as hal;
use linux_embedded_hal::Delay;
use log::info;
fn main(
) -> result::Result<(), Error<<hal::I2cdev as i2c::Read>::Error, <hal::I2cdev as i2c::Write>::Error>>
{
env_logger::init();
let i2c = I2cdev::new("/dev/i2c-1").unwrap();
let i2c = hal::I2cdev::new("/dev/i2c-1").unwrap();
let mut dev = Bme680::init(i2c, Delay {}, I2CAddress::Primary)?;
let mut delay = Delay {};